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Abstract

Aging is a major risk factor for the development of neurodegenerative diseases.

Alzheimer's disease and other neurodegenerative diseases are characterized by

abnormal and prominent protein aggregation in the brain, partially due to deficiency

in protein clearance. It has been proposed that alterations in microglia phagocytosis

and debris clearance hasten the onset of neurodegeneration. Dystrophic microglia

are abundant in aged humans, and it has been associated with the onset of disease.

Furthermore, alterations in microglia containing ferritin are associated with neurode-

generative conditions. To further understand the process of microglia dysfunction

during the aging process, we used hippocampal sections from Tupaia belangeri (tree

shrews). Adult (mean age 3.8 years), old (mean age 6 years), and aged (mean age

7.5 years) tree shrews were used for histochemical and immunostaining techniques

to determine ferritin and Iba1 positive microglia, iron tissue content, tau hyper-

phosphorylation and oxidized-RNA in dentate gyrus, subiculum, and CA1-CA3 hippo-

campal regions. Our results indicated that aged tree shrews presented an increased

number of activated microglia containing ferritin, but microglia labeled with Iba1 with

a dystrophic phenotype was more abundant in aged individuals. With aging, oxidative

damage to RNA (8OHG) increased significantly in all hippocampal regions, while tau

hyperphosphorylation (AT100) was enhanced in DG, CA3, and SUB in aged animals.

Phagocytic inclusions of 8OHG- and AT100-damaged cells were observed in acti-

vated M2 microglia in old and aged animals. These data indicate that aged tree shrew

may be a suitable model for translational research to study brain and microglia alter-

ations during the aging process.

K E YWORD S

8OHG, arginase-1, AT100, CA1-CA3, dentate gyrus, IL-10, oligodendrocytes, phagocytic,

subiculum

1 | INTRODUCTION

Nowadays, people tend to live longer than before, and globally the

proportion of older people is growing at a faster rate than the general

population. It is predicted that by 2050 more than 16.5% of the total

population will be aged 60 years or older (He, Goodkind, & Kowal,

2016). Aging is associated with the development of chronic neuro-

degenerative diseases, such as Alzheimer's disease (AD), facing

nations worldwide for increased budget expenses in the health-

care system.
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During aging, iron accumulates in several brain regions (Cook &

Yu, 1998; Massie, Aiello, & Banziger, 1983; Ramos et al., 2014), a con-

dition that has been associated with cognitive decline and neu-

rodegeneration (Bartzokis et al., 1994; Dedman et al., 1992; Penke

et al., 2012). Iron is a trace element essential for oxidation–reduction

catalysis and bioenergetics, but it also plays a key role in the formation

of toxic oxygen radicals that can attack all biological molecules. Spe-

cialized molecules for the transport (transferrin) and storage (ferritin)

of iron have evolved. Ferritin may prevent intracellular iron from

reacting with hydrogen peroxide through Fenton reaction, thus

decreasing the production of reactive oxygen species (ROS) (Balla

et al., 1992; Cermak et al., 1993; Guan et al., 2017; Lin & Girotti,

1998; Orino et al., 2001; Wang et al., 2011). In the brain, ferritin is

heavily expressed in oligodendrocytes and microglia (Cheepsunthorn,

Palmer, & Connor, 1998; Connor, Boeshore, Benkovic, & Menzies,

1994; Connor & Menzies, 1995). Microglia are resident macrophages

of the central nervous system that provide the first line of defense

against any invading pathogen (Tremblay et al., 2011). Upon activa-

tion, microglia increase the synthesis of pro-inflammatory and anti-

inflammatory cytokines and other molecular mediators, leading to the

characterization of two different phenotypes: (a) M1 activation, which

is associated with inflammation and (b) M2 activation, involved in the

removal of cellular debris and damaging agents by phagocytosis

(Cameron & Landreth, 2010; Franco & Fernández-Suárez, 2015; Gor-

don, 2003; Kabba et al., 2017; Orihuela, McPherson, & Harry, 2016;

Tang & Le, 2016). Robust microglia proliferation and activation char-

acterizes AD pathology (Cameron & Landreth, 2010; Floden & Combs,

2011; von Bernhardi, Eugenín-von Bernhardi, & Eugenín, 2015); how-

ever, brain iron accumulation does not parallel the increases in ferritin

expression in AD patients (Castellani et al., 2004; Lopes, Sparks, &

Streit, 2008). Previous reports described that microglia expressing

L-chain ferritin shows a dystrophic phenotype in AD and other neurode-

generative diseases (i.e., such as Huntington disease, Down syndrome,

dementia with Lewy bodies) (Lopes et al., 2008; Simmons et al., 2007;

Streit, Braak, Xue, & Bechmann, 2009; Streit & Xue, 2016; Xue & Streit,

2011). It is postulated that dystrophic microglia loses its function as

cytoplasmic disruption occurs (Tischer et al., 2016) resulting in neuronal

vulnerability against invading agents or toxic substances.

Understanding the process of microglia function/dysfunction

requires the use of a proper animal model that resembles an aging

human brain. A recent analysis showed that several microglia genes

are expressed differently in humans and mice as a function of age

(Galatro et al., 2017) or after activation (Satoh, Kino, Yanaizu, &

Saito, 2018), indicating that rodents may not be an ideal animal

model to study the functional roles of microglia. Tree shrews (Tupaia

belangeri) are small body-sized omnivorous mammals belonging to

the order Scandentia (Fuchs, 2015); however, recent genome analy-

sis demonstrated a close genetic relationship to primates (Fan et al.,

2013). Their natural habitats are tropical forests and plantation

areas in Southeast Asia. They have proved to be useful animal

models in many instances where a small omnivorous nonrodent spe-

cies is required for studying fundamental biological functions and

disease mechanisms (Cao, Yang, Su, Li, & Chow, 2003; Fuchs &

Corbach-Söhle, 2010; Yao, 2017). For aging studies, tree shrews are

ideal models as they have a longer life span compared to rodents

(7–8 years), but shorter life span than nonhuman primates (Fuchs &

Corbach-Söhle, 2010; Keuker, Keijser, Nyakas, Luiten, & Fuchs,

2005). In addition, tree shrews present a high sequence homology

with human proteins, more importantly, with AD-related proteins

(i.e., abeta, APP, and tau) (Fan et al., 2018; Meyer, Palchaudhuri,

Scheinin, & Flügge, 2000; U. Meyer, Kruhøffer, Flügge, & Fuchs,

1998; Palchaudhuri, Hauger, Wille, Fuchs, & Dautzenberg, 1999;

Palchaudhuri et al., 1998; Pawlik, Fuchs, Walker, & Levy, 1999). Fur-

thermore, old tree shrews spontaneously develop mild amyloidosis

and somatostatin plaque-like structures in several brain regions (Fan

et al., 2018; Yamashita, Fuchs, Taira, & Hayashi, 2010; Yamashita,

Fuchs, Taira, Yamamoto, & Hayashi, 2012), showing reductions in sero-

tonergic fiber densities in the hippocampus (Keuker et al., 2005) and

impairments in working memory (Keuker, de Biurrun, Luiten, & Fuchs,

2004). In this study, we analyzed the brains of adult, old, and aged tree

shrews to determine the presence of dystrophic microglia, oxidized

RNA, iron tissue content, and tau hyperphosphorylation. In aged sub-

jects, there was an enhanced number of Iba1-labeled dystrophic

microglia in all regions analyzed. Ferritin-containing microglia with an

activated morphology increased in some hippocampal regions of aged

animals. Some activated microglia were labeled with Arginase-1 and IL-

10, indicating an M2 phenotype. Oxidative damage to RNA (8OHG)

increased in all regions analyzed during the aging process, similar to tau

hyperphosphorylation (AT100). Hippocampal regions with less ferritin-

containing microglia (i.e., subiculum) presented abundant iron tissue

content and the highest AT100 labeling in aged animals. Thus, tree

shrews can be considered a valuable translational animal model for

studying the process of human brain aging.

2 | METHODS

2.1 | Subjects

Experimentally naive male tree shrews (T. belangeri) were obtained

from the breeding colony at the German Primate Center (Göttingen,

Germany). Animals were housed individually under standard condi-

tions complying with the European Union guidelines for the accom-

modation and care of animals used for experimental and other

scientific purposes (2007/526/EC) on a 12 hr light/dark cycle with ad

libitum access to food and water (Fuchs & Corbach-Söhle, 2010). All

animal experiments were performed in accordance with the German

Animal Welfare Act, which strictly adheres to the European Union

guidelines (EU directive 2010/63/EU). Experienced veterinarians and

caretakers constantly monitored the animals. The experiments were

approved by the Lower Saxony State Office for Consumer Protection

and Food Safety (LAVES, Oldenburg, Germany). Animals did not pre-

sent neurological disorders or other injuries that could cause trauma

to the central nervous system.
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2.2 | Tissue preparation

Brains of male tree shrews of different ages were used in the cur-

rent study: four adult (mean age 3.8 years), four old (mean age

6 years), and four aged (mean age 7.5 years) tree shrews were used

based on previous reports (Fan et al., 2018; Keuker et al., 2004,

2005; Wu et al., 2019). Animals were anesthetized with an

i.p. injection (0.1 ml/100 g body weight) of GM II (ketamine,

50 mg/ml; xylazine 10 mg/ml; atropin 0.1 mg/ml), and after loss

of consciousness they received an i.p. injection of ketamine

(400 mg/kg body weight). Bodies were transcardially perfused with

cold (4!C) saline (0.9% NaCl) for 5 min. Subsequently, for fixation of

the brains, cold (4!C) 4% paraformaldehyde (PFA) in 0.1 M phos-

phate buffer, pH 7.2, was infused for 15 min. The brains were

removed and post fixed in fresh 4% PFA at 4!C, where brains were

stored until sectioning. Four days before sectioning, tissue was

washed with 0.1 M phosphate buffered saline (PBS: 0.15 M NaCl,

2.97 mM Na2HPO4-7H2O, 1.06 mM KH2PO4; pH 7.4) and

immersed in 30% sucrose in PBS at 4!C. Horizontal sections (40 μm)

were obtained from hippocampal formation according to Keuker,

Rochford, Witter, and Fuchs (2003) and series were prepared every

sixth section (at interval of 240 μm) by use of sliding microtome

(Leica RM2235). All brain sections were immediately immersed

in cryoprotectant solutions, for light microscopy (300 g sucrose

[J.T. Baker]; 400 mL 0.1 M PB, and 300 ml ethylene glycol [Sigma],

for 1 L) and for immunofluorescence (300 g sucrose; 10 g polyvinyl

pyrrolidone [PVP-40, Sigma]; 500 ml of 0.1 M PB and 300 ml ethyl-

ene glycol, for 1 L) and stored at −20!C until use in free-floating

immunohistochemistry and immunofluorescence protocols.

2.3 | Immunohistochemistry

Dorsal hippocampal sections were permeabilized with 0.2% Triton

X100 in PBS (0.2% PBS-triton) for 20 min at room temperature (RT).

Sections were washed in PBS and incubated in 0.3% H2O2 (in PBS)

for 10 min to inactivate endogenous peroxidase activity. The follow-

ing washing steps were performed three times, 10 min each, in 0.2%

PBS-triton at RT. Sections were incubated in 5% bovine serum albu-

min (BSA; Sigma) in PBS for 15 min (for anti-8OHG) and 3% BSA by

5 min at RT (for AT100, anti Iba1, and anti-Ferritin), in order to block

potential nonspecific antibody binding. Subsequently, sections were

incubated overnight at 4!C with the primary antibodies: anti-8OHG

(a product of RNA oxidation used as an early marker of oxidative

stress; Kasai, Kawai, & Li, 2008), AT100 (phosphorylation of tau pro-

tein in the residues Thr212 and Ser214; Zheng-Fischhöfer et al.,

1998), anti-Iba1 (ionized calcium binding adaptor molecule 1, a widely

used marker of microglia; Imai, Ibata, Ito, Ohsawa, & Kohsaka, 1996)

and anti-ferritin (iron storage protein highly expressed in microglia;

Zhang, Surguladze, Slagle-Webb, Cozzi, & Connor, 2006) (see Supple-

mentary Table S1) diluted in 0.2% PBS-triton at RT. Thereafter,

sections were incubated for 2 hr with secondary horseradish

peroxidase-conjugated antibodies (see Supplementary Table S1) in

0.2% PBS-triton at RT. Hydrogen peroxide (0.01%) and DAB (0.06%)

in 0.2% PBS-triton were used to develop the horseradish peroxidase

enzymatic reaction. The enzymatic reaction was stopped with 0.2%

PBS-triton, then sections were mounted on glass slides and left to dry

overnight. Dry sections were cover slipped with mounting medium

Entellan (Merck).

2.4 | Double labeling immunofluorescence

For double labeling immunofluorescence of 8OHG/Iba1, 8OHG/ferri-

tin, AT100/Iba1, AT100/ferritin, and Iba1/ferritin, sections were

permeabilized with 0.2% PBS-triton for 20 min at RT. Thereafter, sec-

tions were treated with 5% BSA for 15 min at RT, and coincubated

overnight at 4!C with primary antibodies (see Supplementary

Table S1). Then, sections were washed with 0.2% PBS-triton, and

incubated 2 hr with secondary antibodies (see Supplementary

Table S1) diluted in 0.2% PBS-triton at RT. Control sections were

processed without the primary antibody. All sections were co-

incubated with DAPI (Invitrogen, 1:1,000) in 0.2% PBS-triton for

30 min at RT. The sections were then washed and mounted on glass

slides. Dry sections were cover slipped with mounting medium

VectaShield (Vector Laboratories).

2.5 | Double labeling immunofluorescence using

antibody signal enhancer

For double labeling immunofluorescence of anti-Iba or anti-ferritin,

CNPase (a marker of oligodendrocytes) and classical markers of macro-

phage/microglia M2 state IL10 or Arg1 antibodies (Cherry, Olschowka, &

O'Banion, 2014, 2015), we used an antibody signal enhancer (ASE) solu-

tion (Flores-Maldonado et al., 2020; Rosas-Arellano et al., 2016). Briefly,

F IGURE 1 Regions of interest through a horizontal section of the

hippocampus of the tree shrews. Nissl staining allowed a clear

identification of four areas of interest delineated by squares.

Subiculum (SUB), CA1-CA3 subfields of the hippocampus (CA1-CA2

and CA3), dentate gyrus (DG). C, caudal; L, left; R, right; R, rostral.

(based on Keuker et al. (2003)). Scale bar 100 μm
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sections were washed with 0.5% PBS-Tween20 twice for 3 min at RT. In

order to block potential nonspecific antibody binding, sections were

incubated for 30 min using a solution containing 2% donkey serum,

50 mM glycine, 0.05% Tween20, 0.1% TritonX-100, and 0.1% BSA

diluted in PBS at RT. For primary antibodies incubation, we used the

ASE solution that consisted of 10 mM glycine, 0.05% Tween20, 0.1%

TritonX-100, and 0.1% hydrogen peroxide in PBS overnight at 4!C (for

antibodies specifications, see Supplementary Table S1). Next day, sec-

tions were washed with 0.5% PBS-Tween20 and then were incubated

with secondary antibody (see Supplementary Table S1) diluted in 0.1%

F IGURE 2 Representative photomicrographs of microglia phenotypes using anti-Iba1 or anti-ferritin antibodies. Microglia labeled with Iba1

antibody (a–f) show activated (a–c, thick arrows) and resting phenotype (a, arrowhead). Dystrophic microglia labeled with Iba1 (d–f, thin arrows)

showed deramified, short, and tortuous processes. Microglia labeled with ferritin antibody (g–l) showed resting (g, arrowhead) and activated (g–l,

thick arrows) phenotypes. Dystrophic microglia labeled with ferritin presented short and deramified processes, spheroids, and cythorrexis (j–l, thin

arrows). Note ferritin antibody also labeled oligodendrocytes (i, stars); however, they are clearly distinguishable from microglia due to round soma

and absence of process. Scale bar 20 μm [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 3 Microglia labeled with Iba1 in hippocampus of tree shrews along aging. (a) Iba1-labeled microglia in all regions and ages analyzed. Most

Iba1-labeled microglia present a resting and activated morphologies (ah) in adult and old subjects, whereas aged subjects (i–l) showed dystrophic microglia

forming clusters with twisted and short processes (arrow). gl, granulare; or, oriens; pol, polymorphic; pyr, piramidale; rad, radiatum. Scale bar 100 μm [Color

figure can be viewed at wileyonlinelibrary.com]

F IGURE 4 Quantification of resting, activated and dystrophic Iba1+microglia per area (mm2) of tree shrew's hippocampus at different ages.

One-way analysis of variance (ANOVA), followed by Tukey's post hoc analysis (*p < .05; **p < .01; ***p < .001)
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PBS-Tween20 for 2 hr at RT. Then, sections were rinsed and the stan-

dard double labeling immunofluorescence (see Section 2.5) for anti-Iba1

or anti-horse spleen ferritin was followed.

2.6 | Histochemical detection of iron

Detection of iron was performed according to Sands, Leung-Toung,

Wang, Connelly, and LeVine (2016). First, slices were incubated in a

solution of 1% potassium ferrocyanide trihydrate/5% PVP/0.05 N HCl

for 60 min at RT. Sections were washed with water and incubated in

methanol containing 0.01 M sodium azide and 0.3% hydrogen perox-

ide for 75 min at RT. Finally, sections were washed with PBS and incu-

bated in a solution of 10 mg DAB/160 ml 30% H2O2/40 ml 0.01 M

Tris HCl pH 7.4 for 2 min. Sections were washed, mounted on glass

slides and cover slipped with mounting medium Entellan (Merck).

2.7 | Image acquisition

Nikon Eclipse 80i light microscope equipped with a Nikon DS-Ri1

camera was used to acquire bright-field images under 10× (for iron

tissue content, AT100 and 8OHG), 20× and 100× (for Iba1 and ferri-

tin) objectives.

For fluorescent labeling, images were obtained by a confocal

microscopy Leica TCS-SP8 equipped with Diode (405 nm), OPSL

(488 nm), OPSL (552 nm), and diode (638 nm) laser. Both lasers were

always used with optimized pinhole diameter and 40×, 65×, and 100×

objectives were used. All confocal images were obtained as z-stacks

of single optical sections. Stacks of optical sections were sup-

erimposed as a single image by using the Leica LASX software.

Hippocampal regions were classified as dentate gyrus (DG), CA3,

CA2-CA1, and subiculum (SUB) according to T. belangeri neuroana-

tomical description (Keuker et al., 2003) (Figure 1). For each immuno-

histochemical/immunofluorescence protocol, at least two or three

images from each brain section were used to cover the complete

region of interest (see Section 2.8 for details).

2.8 | Morphometry

Microglia quantification and classification were assessed in Iba1 and

ferritin positive microglia/oligodendrocytes as described: three images

from DG, three images from CA3, three images from CA2-CA1 areas,

F IGURE 5 Microglia labeled with ferritin in hippocampus of tree shrews along aging. Ferritin-labeled microglia is detected in all regions and ages

analyzed. In adults (a–d) and old tree shrews (e–h) ferritin-labeled microglia showed mostly an activated and resting morphology. In aged tree shrews

(i–l), predominates the presence of activated microglia. gl, granulare; or, oriens; pol, polymorphic; pyr, piramidale; rad, radiatum. Scale bar 100 μm

[Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 6 Quantification of

microglia (a) and oligodendrocytes

(b) labeled with ferritin in

hippocampus of tree shrews along

aging. Resting, activated and

dystrophic microglia, or

oligodendrocytes were counted per

area (mm2) in the dentate gyrus (DG),

CA2, CA2-CA1, and subiculum (SUB)

of tree shrew at different ages (adult,

old, and aged). One-way analysis of

variance (ANOVA), followed by

Tukey's post hoc test

(*p < .05; **p < .01)

F IGURE 7 Histochemical detection of iron in the tree shrew's hippocampus. Histochemical detection of iron in old and aged tree shrews'

hippocampus. Potassium ferrocyanide trihydrate was used to reveal iron content in brain tissue of old and aged tree shrew. The region with

highest iron levels was SUB (d and g). As expected, oligodendrocytes-like cells (*, in e,f) and microglia-like cells (arrow, in f) show high levels of

iron due to the presence of ferritin. (g) Quantification of area stained with iron showed SUB had the highest iron content compared to other

hippocampal regions. DG, dentate gyrus; cornu ammonis (CA) hippocampal regions, CA3 and CA2-CA1; SUB: subiculum. Scale bar 100 μm [Color

figure can be viewed at wileyonlinelibrary.com]
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and two images from SUB from three brain section per animal from

each age group were used. Based on previous descriptions

(Rodriguez-Callejas et al., 2019; Rodriguez-Callejas, Fuchs, & Perez-

Cruz, 2016; Streit et al., 2009; Streit, Sammons, Kuhns, & Sparks,

2004), cellular morphological characteristics were classified as: resting

(displaying a slight ramified morphology and small rounded soma),

activated (hypertrophic soma and ramified cells with extensively thick

and branched processes), and dystrophic cells (loss of fine branches,

presence of shortened tortuous processes and/or cytoplasmic frag-

mentation). The number of ferritin positive oligodendrocytes was also

quantified in same brain sections. Ferritin positive oligodendrocytes

were clearly distinguished from microglia due to their circular

cytoplasm and the presence of only one or two short processes

(Lopes et al., 2008; Rodriguez-Callejas et al., 2019) (Figure 2 and

F IGURE 8 Oxidative damage to RNA in hippocampus of tree shrews at different ages. (a) 8-Hydroxiguanosine (8OHG) was used to evaluate

damage to RNA due to oxidative stress. Adult (a–d) and old (e–h) tree shrews present a faint 8OHG labeling compared to aged animals (i–l).

(b) Percentage of area stained by 8OHG in hippocampus of tree shrew at different ages. DG, dentate gyrus; cornu ammonis (CA) hippocampal

regions, CA3 and CA2-CA1; SUB, subiculum. One-way analysis of variance (ANOVA) followed by Tukey's post hoc analysis (*p < .05; **p < .01;

***p < .001; ****p < .0001). Scale bar 100 μm [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 9 Double labeling of microglia (Iba1/ferritin, green) and 8OHG (red) in different hippocampal regions of old and aged tree shrews.

Upper panels: Abundant Iba1 positive cells are labeled in hippocampus of old and aged tree shrews. Intense 8OHG staining was observed in

principal cells layers (pyr, pyramidal layer, gl, granular layer). Zoom: double-labeled microglia (green) with 8OHG (red) in CA1 region. 3D: Three-

dimensional reconstruction and surface rendered z-stack images. Blue arrows: microglia (either Iba1+ or ferritin+) surrounding 8OHG damaged

cells. White arrows: activated-like microglia with 8OHG cytoplasmic inclusions. DG, dentate gyrus; cornu ammonis (CA) hippocampal regions,

CA3 and CA2-CA1; SUB, subiculum. Scale bar 100 μm, except zoom images (Iba1, scale bar 20 μm; ferritin, scale bar 5 μm) [Color figure can be

viewed at wileyonlinelibrary.com]
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Supplementary Figure S1b,c). The number of ferritin positive cells

(microglia or oligodendrocytes) per unit area (number of cells/ number

of images x single image area 0.276 mm2) was scored in each slice.

To quantify the immunoreactivity (−ir) against AT100 and 8OHG,

and iron reactivity we used three brain slices per subject. From each

slice, we obtained the following images: two images from DG, three

images from CA3, two images from CA2-CA1, and one image from

SUB. The total area covered from each region was calculated as the

total number of images multiplied by 1,105,440 μm2 (area of a single

image). We used ImageJ software (NIH, Bethesda, MD) to determine

the area covered by iron or AT100-ir/8OHG-ir cells. To determine the

percentage of immunoreactivity in a determined region, the sum of

the areas covered by AT100-ir/8OHG-ir/iron were divided by the

total area, and then, multiplied by 100.

F IGURE 10 Tau phosphorylation in the tree shrew hippocampus increased with aging. (a) Nuclear AT100 labeling increased with aging in

different hippocampal regions of tree shrews. AT100 was more abundant in principal cell layers (i.e., pyr: pyramidal layer; gl: granulare layer).

Adult (a–d), old (e–h), and aged (i–l) tree shrews. (b) Percentage of area occupied by AT100-ir in hippocampus. DG, dentate gyrus; cornu ammonis

(CA) hippocampal regions, CA3 and CA2-CA1; SUB, subiculum. One-way analysis of variance (ANOVA) followed by Tukey's post hoc analysis

(*p < .05). Scale bar 100 μm [Color figure can be viewed at wileyonlinelibrary.com]
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2.9 | Statistical analysis

GraphPad Prism 6.0 software was used for all statistical analysis. One-

way analysis of variance (ANOVA) was followed by a Tukey's post hoc

test. Differences were considered statistically significant when

p ≤ .05. Data are presented as means ± SEM.

3 | RESULTS

Horizontal sections containing the dorsal hippocampus of adult, old,

and aged tree shrews were used for the analysis. The areas of interest

were subiculum (SUB), CA1-CA3 subfields of the hippocampus

(CA2-CA1 and CA3), and DG (Figure 1).

Antibodies previously shown to identify the features of resting,

activated, or dystrophic microglia were used. Iba1 and ferritin allowed a

clear detection of microglia (Rodriguez-Callejas et al., 2016; Rodriguez-

Callejas et al., 2019). Our results showed that the number of Iba1+ rest-

ing microglia remains quite stable along aging in all regions analyzed,

except in CA2-CA1 region where it increased in aged subjects com-

pared to adults (p < .05). Activated microglia labeled with Iba1 tend to

show an increased in all regions, but it was significantly different only

in CA3 region of aged tree shrews compared to adult subjects (p < .05).

Dystrophic microglia labeled with Iba1 increased in aged tree shrews

F IGURE 11 Hippocampal microglia presented inclusions of hyperphosphorylated tau in old and aged tree shrews. Upper panels: Double

labeling of microglia (ferritin, green) and hyperphosphorylated tau (AT100, red). (a) Representative images from subiculum showed that most

microglia's cytoplasm were negative for tau hyperphosphorylation (white arrow), but some activated-like microglia do present AT100 positive

staining (blue arrow). Scale bar 20 μm. (b) Representative images from dentate gyrus show active-like microglia with AT100-ir aggregates in the

cytoplasmic compartment (blue arrow). Scale bar 5 μm. Lower panels: Double labeling of microglia (Iba1, green) and hyperphosphorylated tau

(AT100, red). (c) In CA1, similarly to ferritin-positive microglia, most microglia labeled with Iba1 do not present AT100-ir (white arrows), while few

microglia presented cytoplasmic AT100 staining (blue arrows). Scale bar 20 μm. (d) In DG, activated-like microglia presented AT100 staining (blue

arrows). Scale bar 10 μm. 3D: Three-dimensional and surface rendering reconstruction [Color figure can be viewed at wileyonlinelibrary.com]
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compared to adults and old animals in DG (both p < .001) and CA3

(p < .01 and p < .05, respectively); and in aged compared to old animals

in CA2-CA1 (p < .05) and SUB (p < .01) (Figures 2–4).

Ferritin antibody was used to label microglia and oligodendro-

cytes. When assessing the number of resting microglia labeled with

ferritin, we observed an increase in CA3 of old and aged tree shrews

compared to adults (both p < .05), but a decrease in CA2-CA1 of adult

compared to old animals (p < .05). Ferritin+ activated microglia

increased in aged tree shrews in all regions analyzed, being signifi-

cantly different in DG and in CA2-CA1 compared to adult and old ani-

mals (DG: both ages, p < .01; CA2-CA1, vs. adult p < .01, vs. old

p < .05). Ferritin+ dystrophic microglia showed an increase in DG and

CA3 region of aged subjects compared to adult ones (both, p < .05)

(Figures 5 and 6). Oligodendrocytes labeled with ferritin decreased in

aged tree shrews compared to adult and old animals in DG (p < .05)

and CA3 (both, p < .01) (Figures 5 and 6).

In our previous study, iron accumulation in brain tissue was asso-

ciated with activation of microglia in brain of aged common marmoset.

We aimed to determine if iron content will also be increased in aged

tree shrews. Iron tissue content was higher in SUB compared to CA3

(p < .01) and CA2-CA1 (p < .05) in old and aged animals (Figure 7).

Then, we aimed to determine whether iron levels and activation of

microglia could be related to oxidative stress damage in brain tissue.

8OHG levels were increased in aged tree shrews in all regions analyzed

compared to adults (DG, p < .05; CA3, p < .05; CA2-CA1, p < .0001; SUB

p < .05) and to old animals (CA3, p < .05; CA2-CA1, p < .0001) (Figure 8).

RNA oxidation may occur in all cell types (Rodriguez-Callejas

et al., 2019). Double labeling of activated microglia either with Iba1 or

ferritin and 8OHG allowed us to confirm our previous observation in

brain of common marmosets: activated microglia in the hippocampus

of tree shrews does not present oxidized-RNA (Figure 9). In general,

activated-like microglia (either Iba1+ or ferritin+) were surrounding

F IGURE 12 Ferritin-labeled microglia showed a phagocytic phenotype. Upper panel: Double labeling of microglia (ferritin, green) and

Arginase-1 (Arg1, red). Activated microglia with phagocytic phenotype showed Arg1 staining in cytoplasmic and spheroids compartments (blue

arrows). Lower panels: Double labeling of microglia (ferritin, green) and interleukin 10 (IL10, red). Activated microglia with phagocytic phenotype

were colabeled with IL10 (blue arrows). Yellow arrow showed a dystrophic microglia (with defragmented cytoplasm and dendritic processes) that

did not showed IL10 staining. Scale bar 20 μm [Color figure can be viewed at wileyonlinelibrary.com]
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8OHG damaged cells (in pyramidal and granular cell layers). Interest-

ingly, some activated-like microglia presented 8OHG cytoplasmic

inclusions, resembling engulfed material. We did not detect whole

cytoplasmic 8OHG labeling in microglia, indicating that this 8OHG

inclusions may represent phagocytized cellular debris (Figure 9).

We used AT100 to detect tau hyperphosphorylation changes

along aging in tree shrews. We detected a nuclear staining with

AT100, already since adulthood, in several regions of the hippocam-

pus. However, staining intensity and the amount of nuclear-AT100-ir

cells increased with aging, indicating a cumulative process, as

observed in aged humans (Gil et al., 2017), common marmosets

(Rodriguez-Callejas et al., 2016), and Rhesus monkeys (Härtig et al.,

2000). AT100-ir increased in DG, CA3, and SUB of aged tree shrews

compared to adults (p < .05), and in aged DG compared to old animals

(p < .05) (Figure 10).

Double labeling of microglia (either with Iba1 or ferritin) and

AT100 further corroborates that microglia did not present AT100;

however, in hippocampal regions with abundant nuclear-AT100

staining (i.e., granular and polymorphic layers of the DG, str. pyramidale

of CA3 and CA2-CA1) some activated-like microglia were AT100+.

However, AT100 labeling formed cytoplasmic clusters inside microglia

(Figure 11b) similar to the inclusions observed with 8OHG (Figure 9).

Based on these observations, we wanted to determine whether

those activated microglia with phagocytic-like inclusion may represent

a M2 state. We double-labeled microglia (either with Iba1 or ferritin)

with Arg1 or IL10, both classical markers of macrophage/microglia

M2 state. We could determine in the hippocampus of aged tree

shrews that activated microglia with phagocytic-like features were

colabeled with Arg1 or IL10, demonstrating a M2 type (Figure 12).

4 | DISCUSSION

4.1 | Increased amounts of dystrophic microglia

labeled with Iba1, and activated microglia labeled with

ferritin characterizes the hippocampus of aged tree

shrews

We previously described that labeling microglia with both Iba1 and

ferritin antibodies allow a clear identification of microglia phenotypes

(resting, activated, and dystrophic) in common marmosets (Rodriguez-

Callejas et al., 2016; Rodriguez-Callejas et al., 2019). Similarly, in tree

shrews, Iba1 and ferritin antibodies were colocalized in the cytoplas-

mic domain of microglia (Supplementary Figure S1a). However, in

agreement with our previous observation in common marmoset

(Rodriguez-Callejas et al., 2019), and even though Iba1 labels all

microglia or macrophage phenotypes (Imai et al., 1996), in the present

study, we observed a higher number of resting (CA2-CA1) and dystro-

phic (SUB, DG, CA3, CA2-CA1) microglia labeled with Iba1 in the hip-

pocampus of aged tree shrews, while ferritin labeled more activated

microglia (DG, CA2-CA1) in aged tree shrews. Furthermore, the num-

ber of activated Iba1+ cells was quite homogenous across ages, with a

slight increase only in the CA3 region of aged tree shrews compared

to younger animals. Previous studies did not show changes in the

number of Iba1+ microglia in the hippocampus of aged rats compared

to younger animals (VanGuilder et al., 2011). However, it has been

reported that microglia proliferation and activation increase in brain

specimens of cognitively normal elderly (Conde & Streit, 2006) and

AD elderly patients (Cameron & Landreth, 2010; Floden & Combs,

2011; von Bernhardi et al., 2015). Similarly, in the tree shrews, the

F IGURE 13 Ferritin labeled more

activated microglia in aged tree shrews.

Activated microglia labeled with Arg1 or

IL10 indicates a M2 type. M2 microglia

phagocytizes cellular debris or neurons

containing high amounts of tau

aggregates (AT100) and/or damaged-RNA

(8-OHG). Phagocytized material

accumulates as cytoplasmic inclusions in

old and aged animals [Color figure can be

viewed at wileyonlinelibrary.com]
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total number of Iba1+ cells increased in aged animals compared to old

or adult animals in all hippocampal regions analyzed (Supplementary

Figure S2).

Ferritin is a heteropolymer formed of two subunits: light chain

(L-chain) and heavy chain (H-chain) (Arosio, Ingrassia, & Cavadini,

2009; Chasteen & Harrison, 1999). The proportion of heavy/light sub-

units depends on the type of cell: neurons mainly express H-rich ferri-

tin (ferroxidase activity), oligodendrocytes express equal amounts of

both subunits, while microglia mainly express L-rich ferritin (long-term

ferric ion storage) (Cheepsunthorn et al., 1998; Connor et al., 1994;

Connor & Menzies, 1995). The ferroxidase activity and long-term iron

storage capacity of ferritin results in decreased ROS generation pro-

viding important cytoprotectant functions (Balla et al., 1992; Cermak

et al., 1993; Guan et al., 2017; Lin & Girotti, 1998; Orino et al., 2001;

L. Wang et al., 2011). Ferritin+ microglia with an activated phenotype

was increased in aged tree shrews, with the highest amounts in DG,

CA2-CA1, and CA3 compared to younger animals. The total number

of microglia (resting, activated, and dystrophic) labeled with ferritin

increased in aged subjects in all regions analyzed (see Supplementary

Figure S2). Thus, tree shrews' microglia suffer similar microglia prolif-

eration as nonhuman primates (common marmoset) and humans

(Rodriguez-Callejas et al., 2016; Streit et al., 2004) during aging. Fur-

thermore, activated microglia in hippocampus of old and aged tree

shrews were colabeled with Arg1 and IL10, suggesting a phagocytic

M2-type. In previous studies, aged common marmosets (mean age

16.83 ± 2.59 years) showed a dramatic reduction in the number of

activated ferritin+ microglia, despite significant increases in iron tissue

content and 8OHG damage (Rodriguez-Callejas et al., 2019). It was

suggested that this decreased number of ferritin-labeled M2 microglia

might render the brain of aged common marmosets vulnerable to oxi-

dative stress, a condition that may be linked to the appearance of two

main hallmarks of neurodegeneration in these nonhuman primates:

amyloid plaques and tau hyperphosphorylation (Rodriguez-Callejas

et al., 2016). In the current study, brains of old and aged tree shrews

presented activated M2 microglia with phagocytic inclusions. This

activated microglia (labeled with ferritin and Iba1) were more abun-

dant in aged animals in almost all regions analyzed, a situation that

may suggest an active protective function. Compared to aged marmo-

sets where abundant dystrophic and few activated microglia are

observed, in aged tree shrews, the significant abundance of activated

microglia in the hippocampus may indicate a still functional and pro-

tective role (Figure 13).

Ferritin antibody also allows the quantification of oligodendro-

cytes. In the tree shrews, we observed a reduction in the number of

oligodendrocytes in the hippocampus of aged animals compared to

younger animals. The differential expression of ferritin in microglia

and oligodendrocytes may reflect cellular-specific ferritin functions/

alterations during the process of aging: the increased number of ferri-

tin+ activated microglia may indicate a neuroprotective role in

response to the enhanced amount of iron (phagocytosis) as mentioned

above; the reduced number of ferritin+ oligodendrocytes may indicate

a deficient aging process, as loss of oligodendrocytes and myelin

protection has been associated with the course of several neurode-

generative diseases (Jana, Hogan, & Pahan, 2009; Liu & Zhou, 2013).

4.2 | Hyperphosphorylation of tau in the

hippocampus of tree shrews

Tau is part of the microtubule-associated protein family whose main

function is to facilitate microtubule assembly and stabilization

(Butner & Kirschner, 1991). Tau phosphorylation is a process that may

be observed under physiological conditions as hibernation (Arendt

et al., 2003; Hudson & Scott, 1979), starvation (Yanagisawa, Planel,

Ishiguro, & Fujita, 1999) and torpor (Luppi et al., 2019). In aging and

neurodegenerative diseases, excessive phosphorylation of tau causes

its self-aggregation in straight and paired-helical filaments, which sub-

sequently form the so-called neurofibrillary tangles (NFTs) (Alonso,

Zaidi, Novak, Grundke-Iqbal, & Iqbal, 2001; Hof, Glannakopoulos, &

Bouras, 1996) resulting in neuronal dysfunction (Ebneth et al., 1998;

Stokin & Goldstein, 2006) and eventually neuronal death (Avila,

Santa-María, Pérez, Hernández, & Moreno, 2006; Stokin & Goldstein,

2006). Tau hyperphosphorylation and NFT are the main hallmarks of

several neurodegenerative diseases, such as AD (Alonso et al., 2001;

Braak & Braak, 1991). AT100 labels phosphorylation of residues,

Thr212 and Ser214 (Zheng-Fischhöfer et al., 1998), and AT100 local-

izes in the nucleus of human (Hernández-Ortega, Garcia-Esparcia, Gil,

Lucas, & Ferrer, 2016) and mouse (Gärtner, Janke, Holzer, Van-

mechelen, & Arendt, 1998) brain samples. Gil et al. (2017) showed

that nuclear AT100-ir in human hippocampal neurons increases

through aging, reaching the highest levels in senile neurons. However,

in AD cases, AT100-nuclear staining progressively decreases with dis-

ease severity (Hernández-Ortega et al., 2016) and the staining turns

to NFT (Gil et al., 2017). Our present data show an increased nuclear

AT100 staining in the hippocampus of aged tree shrews that corre-

lates well with the human aging process.

In nonhuman primates, aging leads to hyperphosphorylated tau

filaments formation in neurons, oligodendrocytes and astrocytes

(Darusman et al., 2014; Härtig et al., 2000; Oikawa, Kimura, &

Yanagisawa, 2010; Perez et al., 2013; Rodriguez-Callejas et al., 2016;

Schultz, Dehghani, et al., 2000; Schultz, Hubbard, Rüb, Braak, & Braak,

2000). However, in tree shrews, we did not see AT100-ir in microglia

cells, but rather AT100 inclusions. Tau hyperphosphorylation and

aggregation are related to iron accumulation; iron accumulates in the

brain during normal aging (Ramos et al., 2014; Ward, Zucca, Duyn,

Crichton, & Zecca, 2014), mild cognitive impairment (Smith et al.,

2010) and AD (Andrasi, Farkas, Scheibler, Reffy, & Bezur, 1995; Smith,

Harris, Sayre, & Perry, 1997). Furthermore, iron promotes oxidative

damage (Smith et al., 1997) and tau phosphorylation itself (Guo et al.,

2013; Xie et al., 2012; Yamamoto et al., 2002). In the present study,

SUB was the hippocampal region with the highest amount of AT100

and the highest amount of iron, but the lowest number of ferritin-

labeled microglia. This may suggest that the lack of ferritin-positive

microglia in SUB may compromise not only iron storage in these cells,
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but may promote tau phosphorylation in nearby cells, leaving this

brain region highly vulnerable to damage.

4.3 | M2 and dystrophic microglia in old and aged

tree shrews

One reliable marker of aging-related oxidative stress is 8OHG, a prod-

uct of RNA oxidation (Kasai et al., 2008; Syslová et al., 2014). Studies

in human, rat and SOD1G93A mice demonstrated that RNA is more

vulnerable to oxidative damage than DNA, proteins and lipids (Chang

et al., 2008; Fiala, Conaway, & Mathis, 1989; Nunomura et al., 1999).

8OHG increases in liver, kidney, heart, and brain during aging in

humans and rodents (Hamilton et al., 2001; Nunomura et al., 2012).

Microglia express high amounts of glutathione (Chatterjee, Noack,

Possel, Keilhoff, & Wolf, 1999) and glutathione peroxidase (Power &

Blumbergs, 2009) that protect from oxidative stress. During microglia

activation, the superoxide dismutase 2 (SOD-2) reduces ROS produc-

tion and contributes to microglia inactivation (resolution of inflamma-

tion) (Ishihara, Takemoto, Itoh, Ishida, & Yamazaki, 2015). In addition,

the inflammation-related protein autotaxin decreases free radical for-

mation and accumulation of carbonylated proteins (Awada et al.,

2012). Overexpression of ferritin may be another factor that protects

microglia against oxidative damage during activation (Balla et al.,

1992; Cermak et al., 1993; Guan et al., 2017; Lin & Girotti, 1998;

Orino et al., 2001; Wang et al., 2011). In the present study, most ferri-

tin+ microglia were not stained with 8OHG, unlike pyramidal neurons

and granular cells in old and aged tree shrews that showed an

enhanced accumulation of oxidative damage (8OHG) with age.

M1 microglia, called pro-inflammatory microglia, protect tissue

against pathogens secreting ROS, reactive nitrogen species (RNS) and

several pro-inflammatory cytokines such as IL-β, IL-1α, IL-6, IL-2, TNF-

α, CD68, CD32, iNOS, and IFN-γ (Cameron & Landreth, 2010; Orihuela

et al., 2016; Tang & Le, 2016). M2 microglia, termed anti-inflammatory

microglia, perform the phagocytosis of cell debris, pathogens and

misfolded proteins, promote tissue repair, neuron survival and resolu-

tion of inflammation (Cameron & Landreth, 2010; Franco & Fernández-

Suárez, 2015; Kabba et al., 2017; Orihuela et al., 2016; Tang & Le,

2016). M2 microglia secretes anti-inflammatory cytokines (IL-10, IL-4,

IL-13), neurotrophic factors and enhances expression the of arginase-1

(Arg1), FIZZ1 (found in the inflammatory zone), and the chitinase-like

protein (Ym1), proteins that promote extracellular matrix repair, and are

considered as M2 markers (Cameron & Landreth, 2010; Franco &

Fernández-Suárez, 2015; Kabba et al., 2017; Orihuela et al., 2016;

Tang & Le, 2016). In this study, we observed that activated microglia

were mainly surrounding 8OHG+ cells or presented 8OHG cytoplasmic

inclusion. These features have been observed during microglia engulf-

ment of cellular debris, a classical feature of phagocytic M2 activation

(Nelson, Warden, & Lenz, 2017; Tichauer & von Bernhardi, 2012; Wang

et al., 2013). In previous studies, we also reported amoeboid shaped

ferritin+ microglia surrounding 8OHG+ cells. Moreover, those microglia

colocalized with Arg1 and IL10 (Rodriguez-Callejas et al., 2019),

indicative of M2-activation. Here, we further demonstrate that amoe-

boid shaped microglia (activated) in the hippocampus of tree shrews

were positive for Arg1 and IL10. M2-microglia surrounded AT100+

cells or presented some AT100 inclusions demonstrating a neuro-

protective (phagocytic) action (Figure 13). Contrastingly, it has been

reported that aged microglia, despite enhancing the expression of

genes related to neuroprotection and neurorestoration (Hickman et al.,

2013) had a reduced capacity to engulf or clear amyloid-β fibrils

(Floden & Combs, 2011). For example, in the visual cortex of old rhesus

monkeys, an increased number of intracellular inclusions in microglia

has been reported, indicative of increased phagocytosis; however,

these microglia showed a reduced capacity to digest the engulfed parti-

cles (Peters, Josephson, & Vincent, 1991). This dysfunctional microglia

has been related to aging in humans and nonhuman primates

(Rodriguez-Callejas et al., 2016; Simmons et al., 2007; Streit et al.,

2004; Streit et al., 2009; Verina, Kiihl, Schneider, & Guilarte, 2011; von

Eitzen et al., 1998; Xue & Streit, 2011), as it shows deficiencies in the

capacity to internalize and degrade toxic extracellular proteins (Borroni

et al., 2014; Griciuc et al., 2013; Guerreiro et al., 2013; Kleinberger

et al., 2014). Therefore, it has been proposed that dysfunctional

microglia with a reduced neuroprotective function may be related to

the onset of neurodegeneration (Flanary & Streit, 2004; Streit, 2006;

Streit, Xue, Tischer, & Bechmann, 2014). In the hippocampus of tree

shrews, we observed an increased number of dystrophic microglia in

DG and CA3 regions. Thus, it is tempting to suggest that after a long-

term activation (about 4 years from adulthood to aging), the neuro-

protective function of M2 microglia declines due to the accumulation

of cellular debris (such as AT100) and oxidative stress, and conse-

quently microglia cells enter into dystrophy.

In conclusion, tree shrews presented age-dependent brain alter-

ations such as iron accumulation, oxidative damage, and microglia

activation as described in aged humans (Norden & Godbout, 2013;

Ramos et al., 2014; Streit et al., 2004; Syslová et al., 2014) and non-

human primates (Csiszar et al., 2012; Knauer et al., 2017; Rodriguez-

Callejas et al., 2016; Rodriguez-Callejas et al., 2019; Roede et al.,

2013; Verina et al., 2011). In addition, their shorter life span, plus the

spontaneous development of dystrophic microglia, amyloid beta

aggregates and tau hyperphosphorylation, tree shrews are proposed

as an excellent animal model for the study of brain aging.
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